# Intramolecular Photoarylation of Enamino-ketones: Simple Synthesis of Hexahydroapoerysopine Dimethyl Ether 

By Hideo Iida,* Tatsutoshi Takarai, and Chihiro Kibayashi<br>(Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192-03, Japan)

Summary A novel synthesis of hexahydroapoerysopine dimethyl ether (11), by photolytic intramolecular arylation of the $6^{\prime}$-iodo- and 7 -bromo-derivatives of 1,2,3,3a,4,5-hexahydro- $N$-(3,4-dimethoxyphenethyl)indol6 -one (6) and (8) to 2,3 -dihydroapoerysopin- $1(3 a H)$-one (9), followed by reduction with $\mathrm{LiAlH}_{4}$ to $c i s-2,3,3 \mathrm{a}, 12 \mathrm{c}-$ tetrahydroapoerysopine (10) and then hydrogenation, is reported.

Treatment of tetrahydroerythraline under acidic conditions followed by reaction with diazomethane yields an optically active base, hexahydroapoerysopine. ${ }^{1}$ We have now devised a new synthesis of the title compound (11) $\dagger$ from the key intermediate (9) obtained by photolysis of halogen-containing enamino-ketones. $\ddagger$ Our results represent a convenient one-step preparation of enamino-ketones from the imino-enol ether (5) and a new intramolecular arylation.
Iodination ( $\mathrm{I}_{2}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Ag}, \mathrm{CHCl}_{3}$ ) of 3,4-dimethoxyphenethyl alcohol ${ }^{2}$ gave the iodo-alcohol ( $\mathbf{1}$ )§ ( $84 \%$ ), m.p. $52-54{ }^{\circ} \mathrm{C}$, which was then chlorinated ( $\mathrm{SOCl}_{2}, \mathrm{PhNEt}_{2}$, $\mathrm{C}_{6} \mathrm{H}_{6}$ ) to afford the phenethyl chloride (2) ( $85 \%$ ), m.p. $76-78^{\circ} \mathrm{C}$. This was then converted into the corresponding iodide (3) $(95 \%)$, m.p. $55-57^{\circ} \mathrm{C}$, by treatment with NaI-MeCOEt complex. Heating (3) and the imino-enol ether (5) (obtained readily from Birch reduction of 6 -methoxyindoline $)^{3}$ in refluxing toluene provided the iodo-enamino-ketone (6) $(55 \%)$, m.p. $129-130{ }^{\circ} \mathrm{C}$. Irradiation of (6) in dioxan containing $E t_{3} \mathrm{~N}$ with a 100 W high-pressure mercury lamp and Pyrex filter produced the tetracyclic
compound (9) $(50 \%)$ as a syrup, $m / e 299\left(100 \%, M^{+}\right) ; \delta$
$\left(\mathrm{CDCl}_{3}\right) 6.50(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$, together

(1) $X=I, Y=O H$
(2) $X=I, Y=C l$
(3) $X=Y=I$
(4) $X=H, Y=I$

(6) $X=I, Y=H$
(7) $X=Y=H$
(8) $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Br}$

(10)

(5)

(9)

(11)
with the photoreduction product (7) (30\%), m.p. $44-45{ }^{\circ} \mathrm{C}$. The latter product (7), which could be prepared alternatively from the imino-enol ether (5) and the phenethyl iodide (4) ${ }^{2}$

[^0]in the same way as described for (6), was allowed to react with an equimolecular amount of $\mathrm{Br}_{2}$ in $\mathrm{CHCl}_{3}$ to give the bromo-enamino-ketone (8) ( $75 \%$ ), m.p. 127-129 ${ }^{\circ} \mathrm{C}$. By similar irradiation in MeCN, (8) underwent photocyclisation and photoreduction, to give (9) ( $38 \%$ ) and (7) ( $13 \%$ ), respectively.

Reduction of (9) with $\mathrm{LiAlH}_{4}$ in tetrahydrofuran afforded the cis dimethyl ether ( $\mathbf{1 0}$ ) $(62 \%)$, m.p. $80-82^{\circ} \mathrm{C}$. The stereochemical assignment for (10) was based on its n.m.r. spectrum in which the $12 \mathrm{c}-\mathrm{H}-3 \mathrm{a}-\mathrm{H}$ coupling constant ( $J$
6.5 Hz ) indicated that the c/D-ring junction is cis. Hydrogenation of (10) in AcOH over Adams catalyst at 2.5 atm yielded hexahydroapoerysopine dimethyl ether (11) (43\%) as a syrup, picrate m.p. $233-234{ }^{\circ} \mathrm{C}$; it is thought that hydrogen adds to the less hindered $\alpha$-side of the compound resulting in a B/D cis fusion, in analogy with previous work. ${ }^{3}$

We thank the Ministry of Education, Japan, for financial support (to C.K.).
(Received, 9th May 1977; Com. 438.)
${ }^{1}$ V. Prelog, K. Wiesner, H. G. Khorana, and G. W. Kenner, Helv. Chim. Acta, 1949, 32, 453; E. W. Warnhoff, in 'Molecular Rearrangements,' ed. P. de Mayo, Interscience, New York, 1964, part 2, p. 846.
${ }^{2}$ M. Barash and J. M. Osbond, J. Chem. Soc., 1959, 2157.
${ }^{3}$ H. Iida, S. Aoyagi, and C. Kibayashi, J.C.S. Perkin I, 1975, 2502.


[^0]:    $\dagger$ The synthesis of an apoerysopinone derivative via acid-promoted reaction of a halogenated enamide was reported by A. Mondon and H.-U. Menz, Tetrahedron, 1964, 20, 1729.
    $\ddagger$ For a related cyclisation, the photochemical formation of a pyrrolobenzazepinone from an enamide was recently described (I. Tse and V. Snieckus, J.C.S. Chem. Comm., 1976, 505).
    § Satisfactory analytical and spectral data were obtained for all new compounds.

